

Simblee™ RFD77101

IoT for connecting Everyone and Everything

Only 7mm x 10mm

Simblee™ BLE Module RFD77101

PRELIMINARY DATASHEET

Features

- Bluetooth Low Energy (BLE) Stack built-in
- Fully encapsulated and hermetically sealed
- Long range
- Simblee™ interference immunity
- 3ms latency
- 10us accuracy (jitter)
- Physical range adjustable from a few inches to hundreds of feet
- Build iPhone and Android apps without Xcode or the Android SDK
- Built in AES encryption engine
- 7mm x 10mm x 2.2mm
- 29 GPIOs (flexible pin configuration)
- <4uA ULP with clock running (run for years on a coin cell)
- 600nA ULP Sleep mode
- 8mA TX @ 0dBm, 12mA TX @ +4dBm
- 10mA RX
- -93dBm receiver sensitivity
- -55dBm to +4dBm TX power
- ARM Cortex M0 processor
- Flash code space available for user application (no need for external controller)
- 6x ADC inputs, 4x PWM outputs, 2x SPI master/slave, 2x I2C, 1 x UART
- Temperature sensor
- Battery/Supply voltage monitoring
- Onchip UART bootloader
- OTA programming (optional)
- Operating Voltage: 1.8 3.6V
- Integrated 16 MHz crystal and 32KHz precision crystal
- Integrated antenna
- Integrated shield
- FCC, IC, CE, TELEC compliance pending
- Easy to pick and place
- Patents Pending

1. Overview of the Simblee™ RFD77101

1.1 Introduction

The Simblee RFD77101 is a high performance, professional grade Bluetooth Low Energy radio transceiver with a built-in ARM Cortex M0 microcontroller that can be programmed using the simple-to-use Arduino IDE using Simblee extensions.

Simblee is IoT for connecting Everyone and Everything (IoT4EE).

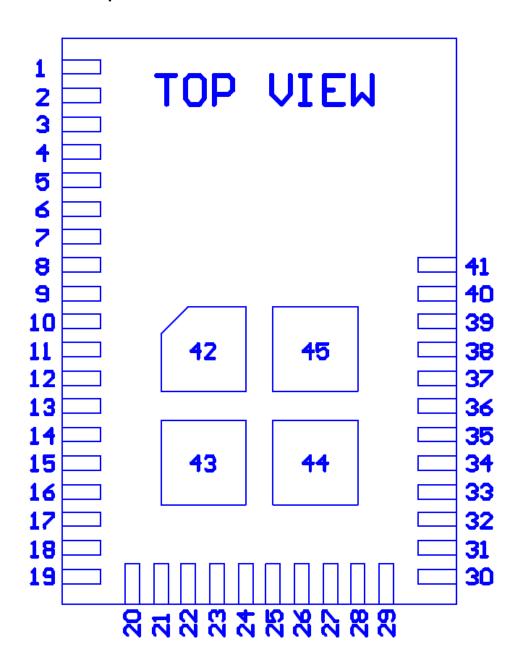
It incorporates Mobile, BLE, Mesh, Cloud and other forms of wireless connectivity.

Simblee is high-quality, cutting-edge and performance focused.

Using the Simblee mobile browser on a phone or tablet, anyone can interact with Simblee enabled devices instantly without needing to download additional apps for each device.

In just hours you can create functional IoT applications using the Simblee development environment.

Developers can start developing mobile apps without having to first learn Xcode or Android SDKs.

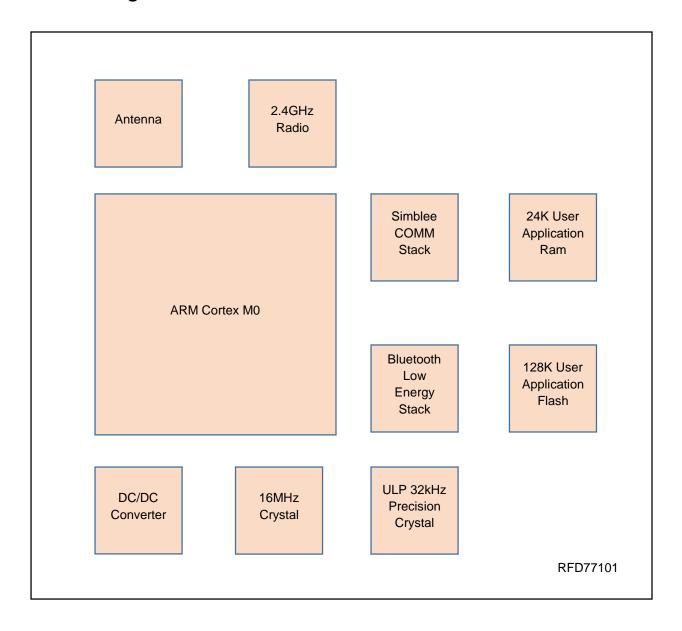

1.2 Basic Operation

Simblee is programmed using the Arduino IDE. Code is loaded using the onchip UART bootloader or via OTA (over the air) programming.

2. Pinout

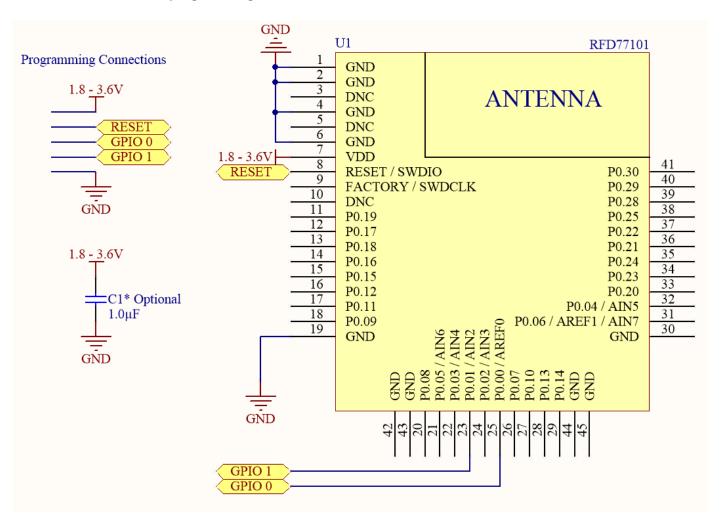
2.1 45-pin LGA 0.5mm pitch

2.2 Pin Descriptions


Name	Pin	Type	Signal	Comments
1	GND	Р	Supply ground	
2	GND	Р	Supply ground	
3	DNC	Х	DO NOT CONNECT	
4	GND	Р	Supply ground	
5	DNC	Х	DO NOT CONNECT	
6	GND	Р	Supply ground	
7	VDD	Р	1.8 – 3.6V Supply	
8	RST/SWDIO	I/O	Reset / SWDIO	
9	FACT/SWDCLK	ı	Factory / SWDCLK	
10	DNC	Х	DO NOT CONNECT	
11	P0.19	I/O	GPIO 19	
12	P0.17	I/O	GPIO 17	
13	P0.18	I/O	GPIO 18	
14	P0.16	I/O	GPIO 16	
15	P0.15	I/O	GPIO 15	
16	P0.12	I/O	GPIO 12	
17	P0.11	I/O	GPIO 11	
18	P0.09	I/O	GPIO 9	
19	GND	Р	Supply ground	
20	P0.08	I/O	GPIO 8	
21	P0.05	I/O	GPIO 5 / ANALOG 6	
22	P0.03	I/O	GPIO 3 / ANALOG 4	
23	P0.01	I/O	GPIO 1 / ANALOG 2	
24	P0.02	I/O	GPIO 2 / ANALOG 3	
25	P0.00	I/O	GPIO 0 / AREF 0	
26	P0.07	I/O	GPIO 7	
27	P0.10	I/O	GPIO 10	
28	P0.13	I/O	GPIO 13	
29	P0.14	I/O	GPIO 14	
30	GND	P	Supply ground	
31 32	P0.06	1/0	GPIO 6 / AREF 1 / ANALOG 7 GPIO 4 / ANALOG 5	
33	P0.04 P0.20	I/O I/O	GPIO 4 / ANALOG 5	
34	P0.20 P0.23	1/0	GPIO 20	
35	P0.24	I/O	GPIO 24	
36	P0.21	I/O	GPIO 21	
37	P0.22	I/O	GPIO 22	
38	P0.25	I/O	GPIO 25	
39	P0.28	I/O	GPIO 28	
40	P0.29	I/O	GPIO 29	
41	P0.30	I/O	GPIO 30	
42	GND	P	Supply ground	
43	GND	Р	Supply ground	
44	GND	Р	Supply ground	
45	GND	Р	Supply ground	
I Input only	0		ut only push-pull I/O	Input/output

I Input only O Output only, push-pull I/O Input/output

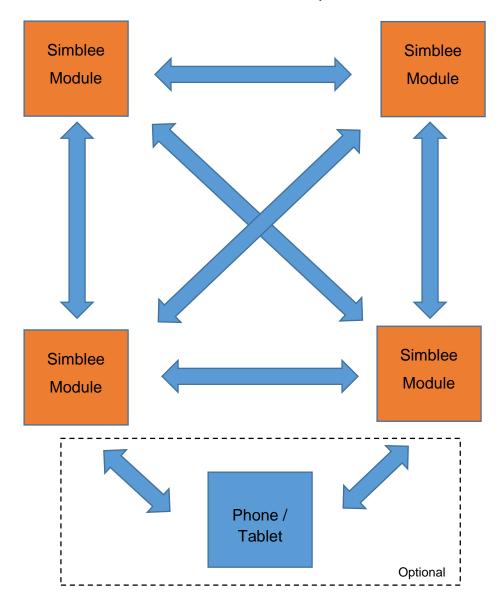
X DO NOT CONNECT P Ground or power


3. Block Diagram

4. Example Circuit Diagrams

4.1 Basic Circuit with programming interface

Note: A bypass capacitor C1 is recommended and should be placed close to pin 7.



5. Modes of Use

Bluetooth Low Energy bi-directional communication with smart phone or tablet

Simblee COMM ad-hoc bi-directional communication between any number of devices

6. Specifications

6.1 Absolute Maximum Specifications

VDD	0 to +3.7 V
-----	-------------

Max continuous pin current, any control or drive pin	±5 mA

CAUTION: Maximum ratings are the extreme limits the chip can be exposed to without causing permanent damage. Exposure to absolute maximum ratings for prolonged periods of time may affect the reliability of the chip.

6.2 Recommended Operating Conditions

V_{DD} +1.8 to 3.6 V

Operating temperature	-40°C to +85°C
Power supply rise time (0V to VDD)	100ms maximum

6.3 Radio Specifications

Parameter	Description	Min	Тур	Max	Units	Notes
Fop	Operating Frequency	2400		2481	MHz	1 MHz channel spacing
BPSFSK	On-Air data rate	250		2000	kbps	
TXpower	TX Power	-55		+4	dBm	
TXIDC+4dBm	TX Current at +4dBm w/ DC/DC		12		mA	
TXI+4dBm	TX Current at +4dBm w/o DC/DC		16		mA	
RXIDC	RX Current w/ DC/DC		10		mA	
RXı	RX Current w/o DC/DC		13		mA	
RXs250	Receiver sensitivity at 250kbps		-96		dBm	
RXs1000	Receiver sensitivity at 1000kbps		-90		dBm	
RXs2000	Receiver sensitivity at 2000kbps		-85		dBm	
RXsble	Receiver sensitivity at BLE		-93		dBm	

6.4 Simblee COM Specifications

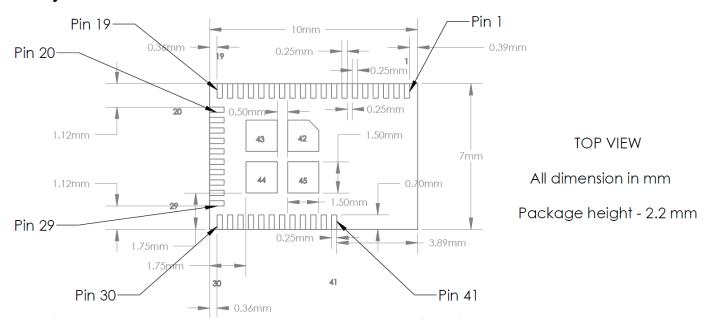
Parameter	Description	Min	Тур	Max	Units	Notes
RFT1	End-to-end latency high speed		3		ms	
RFT2	End-to-end latency long range		12		ms	
RFJ	Jitter / Accuracy		10		us	

6.5 **GPIO Specifications**

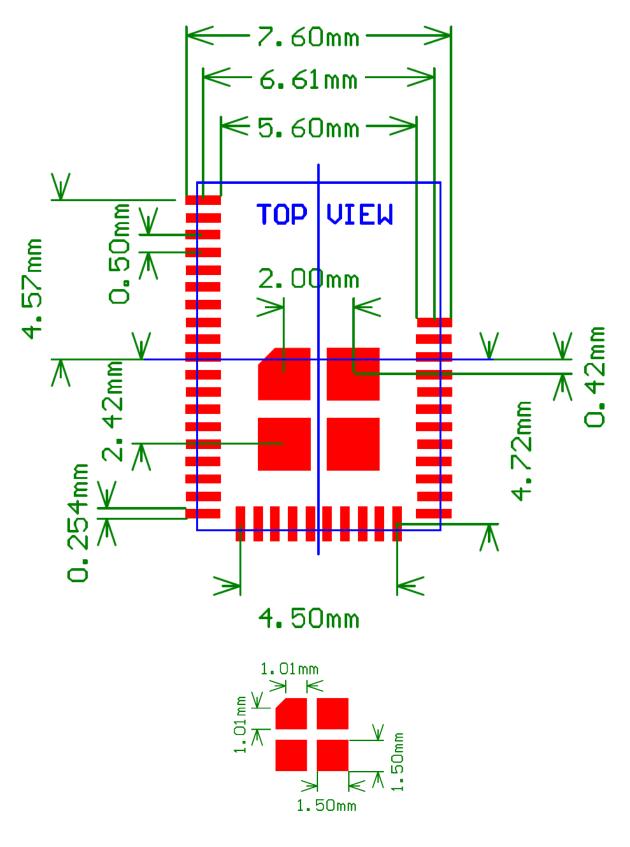
Parameter	Description	Min	Тур	Max	Units	Notes
ViH	Input high voltage	0.7VDD		VDD	V	
VIL	Input low voltage	VSS		0.3VDD	V	
GPIOIHD	GPIO high drive sink/source		5		mA	3 pins max
GPIO ISD	GPIO standard drive sink/source		0.5		mΑ	
Rpu	Internal pull-up resistance	11	13	16	kΩ	
RPD	Internal pull-down resistance	11	13	16	kΩ	

6.6 ADC Specifications

Parameter	Description	Min	Тур	Max	Units	Notes
ADCenob	ADC bits		10		bit	
ADCose	Offset error	-2		+2	%	
ADCge	Gain error	-2		+2	%	
ADCref	Internal Band Gap reference error	-1.5		+1.5	%	1.2V Band Gap voltage
ADCrev_ext	External reference voltage	0.83	1.2	1.3	V	
ADC _{t10}	Conversion time for 1 sample		68		us	10bit sample

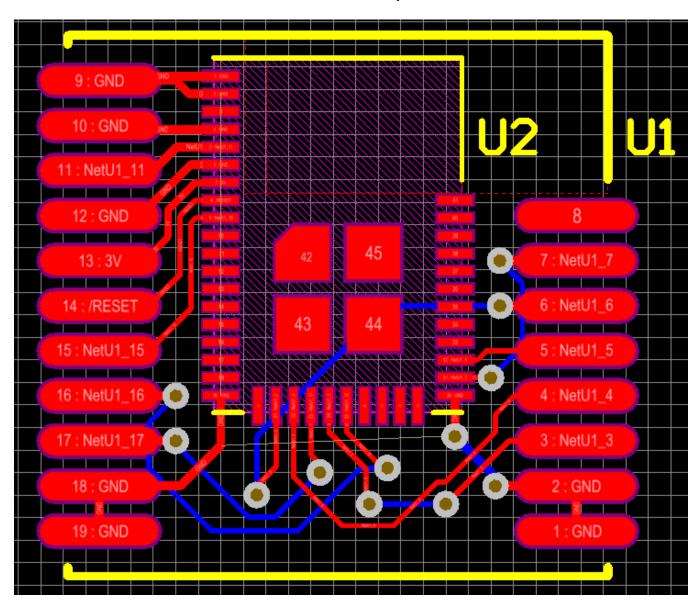

6.7 I2C, SPI and UART Specifications

Parameter	Description	Min	Тур	Max	Units	Notes
I2Crate	I2C bit rate	100		400	kbps	
SPIrate	SPI master bit rate	0.125		4	Mbps	
SPISrate	SPI slave bit rate	0.125		2	Mbps	
UARTrate	UART bit rate	1.2		1000	kbps	



7. Mechanical Specifications

7.1 Physical Dimension



7.2 PCB Land Pattern

7.3 For RFduino users, Simblee / RFduino dual footprint

8. Miscellaneous

8.1 Ordering information

Part Number	Description
RFD77101	Simblee Radio Module

8.2 Assembly information

MSL Rating	Peak Body Temperature	Specifications
TBD	260°C	IPC/JEDEC J-STD-020

8.3 Associated Documents

For additional information, visit www.simblee.com

8.4 Certifications

Certification	Date	Status
FCC	Pending	In Process
CE. ETSI	Pending	In Process
IC	Pending	In Process
MIC, TELEC	Pending	In Process

8.5 Revision History

Revision No.	Date	Notes
0.1	03.27.2015	Initial release

RF Digital Corporation

1601 Pacific Coast Hwy Suite 290 Hermosa Beach, CA 90254 USA

Tel: (949) 610-0008 Fax: (949) 610-0009 www.rfdigital.com support@rfdigital.com

© 2015 RF Digital Corporation. All rights reserved.

Important Notice

RF Digital reserves the right to make corrections, modifications, and/or improvements to the product and/or its specifications at any time without notice. RF Digital assumes no liability for the user's product and/or applications. RF Digital products are not authorized for use in safety-critical applications, including but not limited to life-support applications. RF Digital assumes no liability for parts or their application beyond replacement or refunding the original purchase price. All trademarks and trade names belong to their respective owners. Information provided in this document is for reference only. The user must conduct testing and prototyping on their own application. This document only provides an example of a possible use for the parts shown in this design and requires actual testing to confirm its accuracy or validity or proper application. There is NO suggestion that the devices shown in this document should be used for the implied application. There is no guarantee or warranty of suitability for any specific application. The information disclosed in this document is AS-IS. By using any information contained in this document you are assuming all risks and liability associated therewith. RF Digital reserves the right to make corrections, modifications, changes and/or improvements to specifications or details at any time without notice or obligation. RF Digital assumes no liability for the user's product and/or applications. RF Digital products are not authorized for use in safety-critical applications, including but not limited to lifesupport applications. RF Digital assumes no liability for parts or their application beyond replacement or refunding the original purchase price paid to RF Digital.

Limited Product Warranty

RF Digital warrants that RF Devices manufactured by RF Digital are free from defects in material and workmanship, for Ninety (90) Days from date of delivery. RF Devices covered by this warranty and returned to RF Digital within the Ninety Day Warranty Period will be eligible for replacement, repair, or credit, limited to the amount RF Digital was paid for the RF Device. To obtain a remedy under this Warranty, the following conditions must be met: (1) Customer must notify RF Digital in writing promptly on discovery of the deficiency with reasonable detail within the Warranty Period; (2) Customer must return the RF Devices to RF Digital promptly upon receipt of an RMA from RF Digital, at Customer's risk and expense; and (3) RF Digital confirms the claimed deficiency is present. If all of these conditions are met, RF Digital, at its sole option, will either replace or repair the RF Device or credit Customer's account for the amount the Customer paid to RF Digital for the RF Device.